日韩精品成人在线,欧美国产成人一区二区三区,精品乱子伦一区二区三区

Pickering首頁
聯系銷售

技術支持
電子測試 | 虹科首頁 廣州虹科電子科技有限公司
PXI開關 PXI儀器和機架 PXI可編程電阻 LXI開關 PCI開關 PCI可編程電阻 其它模塊平臺 電纜和連接器 應用行業 關于我們
Pickering首頁 > 應用行業 > 硬件在環仿真

利用PXI故障注入開關進行故障注入測試

Due to the high level of sophistication and complexity of today's Electronic Control Units (ECU) devices, special test methods are required. The idea of testing for system failures is not new, it is an important aspect of ECU validation and involves the introduction of electrical faults into a system (fault insertion testing). The test process typically duplicates various conditions which could occur because of corrosion, short/open circuits and other electrical failure inherited through age, damage or even faulty installation.

Typically, ECUs under development are exercised by a test system that simulates the device that the unit will control – this is sometimes called a Hardware-in-the-Loop (HIL) simulation. Stimulus instrumentation that simulates engine behavior, for example, is connected and controlled either by manual operation or by computer with measurement instrumentation used to capture analog and digital responses from the ECU. When it is necessary to inject faults, traditionally a patch panel, such as that shown in Figure 1, has often been used.

The various cables shown are used to connect any input/output (I/O) line of an ECU to stimulus or measurement instrumentation. The I/O lines may be manually disconnected to simulate an open-circuit or tied together to simulate short-circuits and the results measured. This type of solution has many inherent disadvantages, not least being size. There are also many hidden costs such as on-going maintenance issues, the need for significant knowledge on the part of the operator, potential human error and the cost of labor required to execute the test and record results.

Another major disadvantage of any manual method is the lack of repeatability. The ability to quickly reproduce a failed test condition is essential in a test system, either to aid development or to take corrective action. Being able to precisely reproduce the test procedure quickly is a major advantage in any upgrade or verification program.

The ability to gain software control of both instrument routing and the insertion of real-time electrical faults enhances both the testing process and the recording of the outcome. However, although a standard crosspoint matrix with an adequate specification is capable of handling the instrument routing to the device under test, the insertion of faults requires a specific switching architecture.

  Figure 1 - Using a patch panel to insert faults into a system

Modular Fault Insertion Solutions

Pickering offers a comprehensive range of PXI Fault Insertion Unit (FIU) switch products . These scalable solutions may be used to switch signals between simulations and real-life devices in a multitude of HIL simulation and test systems. The FIUs can help to considerably simplify and accelerate the testing, diagnosis and integration work in HIL applications. The following are some of the most common fault insertion architectures (based on examples of our FIUs):

Single Fault Bus Architecture

This architecture shown in Figure 2 is used on our fault insertion modules (40-195 and 40-196) . In these two cases the input connections are grouped in pairs and then multiple pairs have a connection allowed to a single fault bus. Using this architecture a variety of faults can be simulated in the following ways:

  • Either input connection disconnected from its output
  • Input connection pair shorted together
  • Either input connected to the fault bus
The fault bus could be a power supply, system ground or some other connection in the system. If more than one fault bus condition is required to be simulated then additional (external) switching has to be used to expand the possibilities, or a different architecture used.
Figure 2 - Single Fault Bus Architecture
Figure 2 - Single Fault Bus Architecture

 

Figure 3 - Multiple Fault Bus Architecture

Multiple Fault Bus Architecture

This architecture, shown in Figure 3 below, provides greater flexibility and is used in a variety of our FIU modules . Using this architecture a variety of faults can be simulated:

  • Any input disconnected from its output
  • Any output connected to one of two fault buses
  • Any output shorted to any other output if the fault bus is disconnected

In the architecture used by our 40-190 series fault insertion modules , the fault bus can be disconnected or can be connected to any of four fault conditions, this allows the bus to connect to ground, a power supply or some other condition. As the connections are made with SPST switches setting them all open will allow the fault bus to be disconnected and permit a short between two signals to be created by closing two relays.?


Figure 3 - Multiple Fault Bus Architecture

 

Fault Insertion Matrix

Our fault insertion matrices (40-592 and 40-595) provide a more complex architecture that can be used in a variety of ways for complex fault insertion tests.

The common way of using the fault insertion matrix (shown in Figure 4) is for the connection between the controller and the sensor to be on the X axis. A connection from an input (for example) is made to X1.1 and its output from X1.2. In this example the default condition is for a connection to be made by the normally closed relay. Much more complex faults can be introduced:

  • Open circuit between input and output
  • Fault on the output to X1.2, which could be component inserted by a patch panel arrangement.Connection of any input to one of four fault buses (Y1 to Y4)
  • Connection of any output to one of four fault buses (Y5 to Y8)
  • Short circuits between wires by using an unused X column to provide the short on an unused Y row
  • Addition of other shunt components between wires using Y axis.

The variety of fault types that is simulated is large and the third connection on each X axis adds a great deal more flexibility.?

Figure 3 - Multiple Fault Bus Architecture

Figure 4 - Fault Insertion Matrix

 

Figure 4 - Fault Insertion Matrix

Our FIUs are available in a wide range of channel counts and fault bus configurations with current handling capabilities from 1Amp to 30Amp.?

The image to the right shows a high channel count automotive ECU validation system based on our PXI based fault insertion units (photo courtesy of Clemessy) and below are two examples of our PXI fault insertion modules.

Pickering's PXI fault insertion modules

To learn more about our modular fault insertion solutions , please contact us .

PXI based fault insertion system
 
虹科 > 電子測試 > Pickering Interfaces 專業測試測量用信號開關/可編程電阻/儀器
全部產品
PXI開關
PXI儀器和機箱
PXI可編程電阻模塊
LXI開關解決方案
PCI開關板卡
PCI可編程電阻板卡
其它模塊化平臺
電纜和連接器
應用行業
汽車
軍事和航空航天
射頻和微波
硬件在環
光學解決方案
其它公司的相關產品
Picotech測試測量產品
更多
我們是PXI聯盟創始成員

我們是LXI聯盟戰略成員


關于虹科
虹科積極進取,不斷探索科技新領域。最優秀的員工和最好的技術能夠接受最困難的挑戰。為您找到最佳解決方案。虹科靠口碑贏得客戶。

Email 博客 論壇 點擊發送消息給我 

廣州:400 999 3848 | 上海:021-31215998 | 北京:010-57815068

[email protected] | 廣州虹科電子科技有限公司 | 版權所有 | 廣州市科學城神舟路18號潤慧科技園C棟6層    

<label id="ssmo8"><xmp id="ssmo8">
      • <s id="ssmo8"><kbd id="ssmo8"></kbd></s>

      • 主站蜘蛛池模板: 荥阳市| 诸暨市| 民乐县| 沂水县| 雷山县| 辽宁省| 平顶山市| 托克逊县| 乐亭县| 沙湾县| 泽州县| 连南| 平邑县| 从江县| 壶关县| 哈巴河县| 绵竹市| 许昌市| 青州市| 渑池县| 南木林县| 昌乐县| 新沂市| 临武县| 武清区| 恩施市| 长垣县| 贵州省| 武定县| 明光市| 扎兰屯市| 乌什县| 永兴县| 平乐县| 阿城市| 徐闻县| 饶平县| 陇西县| 喀喇| 木里| 高雄县|